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Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the sur-
face of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV),
severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity
and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evi-
dence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive as-
sessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxic-
ity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted
treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically
distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum
from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization as-
say. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated
with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against en-
veloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral
infections.

The glycan structures displayed on envelope glycoproteins fre-
quently play important roles in virus transmission and entry

into target cells (1). Viruses that establish chronic infections, such
as human immunodeficiency virus (HIV) and hepatitis C virus
(HCV), display a dense shield of oligomannose glycans that also
assist the pathogen in immune evasion, both through the display
of “self”-like epitopes and by induction of immunosuppressive
innate immune responses (2–6). Antiviral compounds that target
envelope glycoproteins are classified as “carbohydrate binding
agents” (CBA) and generally encompass lectins and nonpeptidic
antibiotics such as pradimicin A and S and benanomicin A (re-
viewed by Balzarini [7]). Several different lectins from natural
sources show significant antiviral activity in vitro and have been
proposed as antiviral prophylactic and therapeutic compounds.
While there are a plethora of publications in the scientific litera-
ture showing in vitro antiviral activity of CBA against a broad array
of enveloped viruses, most in vivo studies on the safety and efficacy
of this class of compounds have been performed in pre-exposure
prophylaxis models. However, two important studies demon-
strated the potential of antiviral therapy with lectins. Smee et al.
(8) demonstrated that postexposure treatment with the antiviral
lectin cyanovirin-N (CV-N), which targets an �-(1–2)-linked
mannobiose substructure on oligomannose glycans, showed sig-
nificant survival benefit 6 h after infection in a murine influenza
model. A recent study by Michelow and colleagues (9) demon-
strated that high-dose therapy with human mannose binding lec-
tin (MBL), an endogenous C-type lectin that recognizes glycan
structures, including mannose, glucose, and fucose, on the surface

of pathogens, could ameliorate Ebola virus infection in a murine
model. Despite their demonstrated antiviral activities, the fact that
many natural product lectins have significant in vitro and in vivo
toxicity, acting as nonspecific T-cell stimulants and red blood cell-
agglutinating agents, has limited their development as antiviral
therapeutics. However, not all antiviral lectins are toxins and not
all antiviral lectins have cell-agglutinating activity.

Griffithsin (GRFT) is a 12.77-kDa red-alga-derived lectin that
binds the terminal mannose residues on the asparagine (N)-
linked Man5-9GlcNAc2 structures that comprise the vast major-
ity of N-linked glycans in the HIV type 1 (HIV-1) glycan shield
(10–13). GRFT displays no human T-cell mitogenic activity and,
unlike many other lectins, does not induce production of proin-
flammatory cytokines in treated human peripheral blood mono-
nuclear cells (14, 15). In collaborative studies, we have shown that
GRFT has broad-spectrum antiviral activity against HIV-1 (10,
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15, 16), HIV-2 (16), HCV (17, 18), and an array of pathogenic
coronaviruses, including severe acute respiratory syndrome coro-
navirus (SARS-CoV) (19), in addition to influenza A virus and
several other enveloped viral pathogens (B. R. O’Keefe, unpub-
lished data). The in vitro inhibitory activity (50% effective concen-
tration [EC50]) of GRFT against HIV-1 is in the mid-picomolar to
low-nanomolar range for most isolates (10, 15, 20). The GRFT
EC50 against HCV is 13.9 nM (17) and against SARS-CoV is 48 nM
(12, 19). There is a growing body of published evidence indicating
that GRFT also has antiviral activity ex vivo as well as in vivo:
topical application of GRFT prevents HIV-1 infection of human
cervical explants (15); intranasal treatments with GRFT prevents
disease in mice challenged with SARS-CoV (19); intraperitoneal
(i.p.) treatment with GRFT prevents Japanese encephalitis virus
(JEV) infection in mice (21); and subcutaneous (s.c.) treatment
with GRFT shows some efficacy against HCV challenge in a
mouse-human chimeric liver models (17, 18). The JEV and HCV
studies demonstrated that GRFT is relatively well tolerated by
mice exposed to the drug systemically at doses of 5 mg/kg of body
weight but did not report a comprehensive assessment of GRFT
safety as a potential systemic antiviral treatment. Here, we report
that minimal toxicity is induced by a range of subcutaneous doses
of GRFT in two rodent species. The drug was systemically distrib-
uted and accumulated to high levels in the serum and plasma after
subcutaneous delivery. Furthermore, we demonstrated that se-
rum from GRFT-treated animals retained antiviral activity against
HIV-1-enveloped pseudoviruses in a cell-based neutralization as-
say. Overall, these findings support further investigation into
GRFT’s potential as a systemic antiviral therapeutic agent against
enveloped viruses, including HIV-1.

MATERIALS AND METHODS
Lectin reagents. Recombinant GRFT was produced in Nicotiana bentha-
miana plants as described previously, purified to �99% purity, and for-
mulated in phosphate-buffered saline (PBS), pH 7.4 (15). Phytohemag-
glutinin A (PHA) was purchased from Sigma.

Animal housing and care. For the study, 6-to-8-week-old female
BALB/c mice (Jackson Laboratory) and Hartley guinea pigs (Cavia por-
cellus; Charles River Laboratories) were housed in a temperature- and
humidity-controlled room with an alternating light/dark cycle of 12 h,
with standard diet and water ad libitum. All experimental procedures were
approved by the Institutional Animal Care and Use Committee of the
University of Louisville.

Mouse treatments and sample collection. To evaluate effects of a
single high dose of GRFT, mice were injected subcutaneously with 50
mg/kg GRFT (n � 30) or PBS (n � 15). At 1, 7, and 14 days posttreatment,
10 mice treated with GRFT and 5 control animals were sacrificed and
blood was collected by cardiac puncture. Kidneys, livers, and spleens were
excised. For chronic administration, mice were treated with 10 mg/kg
GRFT (n � 15) or PBS (n � 15) daily for 14 days. Each group was further
subdivided into 3 groups of 5 mice each. Blood was collected from the
submandibular vein every other day, alternating between subgroups. An-
imals were sacrificed on day 14 (9 mice per treatment group), day 16, and
day 21 (3 mice per treatment group at each time point) and the samples
collected as outlined above.

Guinea pig treatment and sample collection. For chronic adminis-
tration in guinea pigs, two studies were conducted at different times. In
the first experiment, 10 mg/kg GRFT (n � 12) or 1 ml/kg PBS (n � 6) was
subcutaneously administered daily for 10 days. The second experiment
was similar to the first, except for the number of animals (GRFT, n � 10;
PBS, n � 6). Half of the animals in each group were sacrificed on day 11
after cardiac puncture exsanguination under conditions of isoflurane an-

esthesia, and the remaining animals were euthanized on day 15. Blood and
organs were collected at sacrifice.

Extraction of GRFT from mouse organs. Pooled organ tissues (100 to
500 mg) were homogenized in 1 ml of PBS supplemented with complete,
EDTA-free Protease Inhibitor Cocktail (Roche) and the samples cleared
by a series of two centrifugation steps performed at 10,000 and 15,000 � g,
respectively, for 10 min each time. The supernatants were stored at �20°C
until use.

GRFT capture immunoassay using the HIV-1 gp120 envelope glyco-
protein. To detect trace amounts of GRFT present in serum and plasma
and in homogenized organ tissues, we used an HIV-1 gp120 binding en-
zyme-linked immunosorbent assay (ELISA) as previously described (14)
with a few modifications. Briefly, Maxisorp plates (Nunc) were coated
with 25 ng purified gp120 (Protein Sciences) and incubated overnight at
4°C. Plates were blocked with 3% (wt/vol) bovine serum albumin (BSA)
in PBS containing 0.05% Tween 20 (PBS-T). Samples were diluted 1:10 in
blocking buffer and were incubated at room temperature (RT) for 1 h.
Serial dilutions of purified GRFT were run in parallel to generate a stan-
dard curve. The gp120-bound GRFT was detected by rabbit anti-GRFT
antiserum (1:25,000) followed by horseradish peroxidase (HRP)-conju-
gated goat anti-rabbit IgG (1:10,000). Plates were developed with Sure-
Blue TMB Microwell peroxidase substrate, and reactions were stopped
with 1 N H2SO4. Absorbance at 450 nm and 570 nm was measured using
a BioTek Synergy HT plate reader.

Evaluation of anti-HIV activity. HIV-1 neutralization activity of
heat-inactivated serum or plasma was measured using pseudovirus neu-
tralization assays as previously described (22). Briefly, molecularly cloned
DU156 env-pseudotyped virus particles were generated by transfection of
293T cells and titrated in TZM-bl cells. Antiviral activity was measured as
a function of luciferase reporter gene activity. The 50% infective dose
(ID50) values were defined as the sample dilution required to reduce
luminescence by 50% in comparison to wells with no sample added.

Hematology parameters and serum chemistry. A complete blood
count (CBC) was run for guinea pig samples using a Hemavet 950 system
(Drew Scientific) standardized for guinea pig blood. The following pa-
rameters were quantified in potassium-EDTA anticoagulated whole
blood: counts of red blood cells (RBC; 104/�l), total and differential leu-
kocyte counts (neutrophils, lymphocytes, monocytes, eosinophils, and
basophils quantitated as 103/�l or %), hemoglobin concentration (HGB;
g/dl), hematocrit (HCT; %), mean corpuscular volume (MCV; fl), mean
cell hemoglobin (MCH; pg), mean cell hemoglobin concentration
(MCHC; g/dl), red cell distribution width (RDW; %), platelets (PLT;
104/�l), and mean platelet volume (MPV; fl).

In the first guinea pig experiment, levels of the following serum chem-
istries were assessed and the differences analyzed by two-way analysis of
variance (ANOVA): serum albumin (Alb), alkaline phosphatase (ALKP),
amylase (Amy), alanine aminotransferase (ALT), blood urea nitrogen
(BUN), calcium (Ca), cholesterol (Chol), creatinine (Creat), globulin
(Glob), glucose (Glu), phosphorus (Phos), total bilirubin (TBil), and total
protein (TP). Based on the results obtained, we decided to further mea-
sure the effect of GRFT on selected markers, including serum albumin,
alkaline phosphatase, and amylase, in the second experiment using a
VetTest Chemistry Analyzer (IDEXX Laboratories).

Hemagglutination assays. Specimens of guinea pig, sheep, and hu-
man blood (Innovative Research) and blood collected from untreated
mice were washed and resuspended at a final concentration of 1% to 2%
(vol/vol) in 1� PBS containing 3 g/liter BSA and 1 g/liter sodium azide.
PBS, phytohemagglutinin (PHA), or GRFT was mixed with an equal vol-
ume of erythrocytes in a 96-well round-bottom plate. The plate was incu-
bated for 1 h at RT, followed by overnight incubation at 4°C. Finally, wells
were dried and hemagglutination activity was determined by visual exam-
ination.

Statistical analysis. Statistical analysis was conducted using Graph
Pad Prism 5 and SAS software version 9.3. Because of the stratification by
guinea pig study, day of sacrifice, and treatment group, it was decided to
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increase statistical power by using all the data from both studies. Three-
way ANOVA (23) was utilized, which allowed testing for treatment effect
while at the same time adjusting for differences between the two studies
and the days of sacrifice. For the initial univariable analysis, the two-
sample t test (24) or Wilcoxon rank sum test (25) was used to test for
differences between studies, days of sacrifice, and treatments. For the sets
of data such as weight change and nonselected serum chemistries col-
lected in only one guinea pig study, a two-way ANOVA was utilized. A P
value � 0.05 was deemed significant.

RESULTS
Griffithsin serum concentrations. Plasma samples collected
from mice injected with a single high dose of 50 mg/kg GRFT
showed up to 4 nM GRFT (4 nM equals 51.08 ng/ml) in animals
sacrificed 1 day posttreatment (Fig. 1A). These levels decreased
considerably to less than 0.5 nM by day 7 and persisted through
day 14.

In chronically dosed mice, plasma concentrations of GRFT
peaked at 25 nM (Fig. 1B) by day 11, followed by a gradual de-
crease in detectable GRFT even with subsequent treatments. This
trend continued throughout the recovery time. Notably, concen-
trations of GRFT persisted in the plasma at levels of approximately
4 nM after a week of recovery (Fig. 1B). GRFT concentrations in
sera from chronically treated guinea pigs were similar to those in
sera from chronically treated mice, with mean concentrations of
36 nM at day 11 and 11.36 nM at day 15 (Fig. 1C).

Anti-HIV activity of plasma and serum. Plasma samples col-
lected from mice treated with a single dose of 50 mg/kg GRFT
neutralized HIV-1 pseudoviruses (clade C primary sexually trans-
mitted isolate Du156) with a mean ID50 of 1,500 on experimental
day 2 (Fig. 2A). This neutralization activity decreased in samples
obtained at days 8 (ID50 of 300) and 15 (ID50 of 200). Plasma from
chronically treated mice neutralized the HIV-1 Du156 pseudovi-
rus with an ID50 value of approximately 800 (Fig. 2B) at day 14.
After the 7-day recovery period, the ID50 values decreased to ap-
proximately 200. Serum samples collected from guinea pigs after
chronic treatment with 10 mg/kg GRFT displayed a mean ID50 of
approximately 3,277 at day 11 and 576 at day 15. The HIV-1
Du156 neutralization activity of guinea pig sera correlated well
with the concentration of GRFT detected in the serum; however,
the GRFT serum concentrations detected in mouse samples pre-
dicted only about 14% to 25% of the actual serum HIV-1 neutral-
ization activity we observed, confirming that additional nonspe-
cific HIV-1 neutralizing activities in mouse serum contributed to
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the higher-than-expected overall HIV-1 inhibitory activity in the
mouse sera.

GRFT distribution into tissues. Organs from mice chronically
treated with GRFT were harvested, and total protein was ex-
tracted. We measured the total amounts of GRFT that accumu-
lated in these tissues by gp120 binding ELISA. Figure 3 shows that
GRFT accumulated in all three organs assayed, with most GRFT
accumulating in the spleen. Nonquantitative immunofluores-
cence studies detected GRFT in the same organs (liver, kidney,
and spleen) harvested from treated guinea pigs (data not shown).

GRFT is tolerated after subcutaneous administration. We
studied the toxicity of GRFT in guinea pigs using several parame-
ters, including mortality, behavior, animal body and organ weight
changes, tissue pathology, and changes in blood properties.

All animals survived, and no change in behavior was observed.
Since the guinea pigs used in this work were juvenile, we evaluated
their overall fitness after GRFT treatment using body weight as a
surrogate marker. Animals were weighed at day 1 and at the time
of sacrifice. Using a 2-way ANOVA to measure the impact of treat-
ment and time on body weight gains, we found that GRFT treat-
ment resulted in significantly less body weight gain in comparison
with that seen with PBS-treated controls (P � 0.0011; Fig. 4).

Liver, kidney, and spleen weights measured at termination
were normalized to total body weights and compared to time-
matched controls. A statistically significant increase of the nor-
malized weights of guinea pig livers and spleens was observed for
GRFT-treated animals (P � 0.008 and 0.005, respectively) (Fig. 5;
see also Fig. S1 in the supplemental material). Tissue sections from
guinea pigs in the second experiment were stained with hematox-
ylin and eosin and evaluated in a blind fashion by a veterinary
pathologist (O. Foreman). No distinct pathologies were observed
as a result of GRFT treatment. Of all CBC parameters tested, a
statistically significant difference was observed only in red blood
cell width (RDW) (P � 0.016) (Table 1; see also Fig. S3 to S6 in the
supplemental material). Of note, the RDW values obtained for
GRFT-treated animals were still within the normal physiological
range described for guinea pigs (26).

In addition to CBCs, serum chemistries were examined. When
data collected from both experiments were combined for analysis,
a statistically significant increase was observed for alkaline phos-

phatase after GRFT treatment compared with control results (P �
0.001) (Fig. 6; see also Fig. S2 in the supplemental material). There
were no statistically significant differences between the GRFT-
treated group and the PBS control group in the remaining serum
chemistry when examined by 2-way ANOVA (Fig. 6; see also
Fig. S2).

Since many natural product lectins cause hemagglutination,
we investigated GRFT’s hemagglutination activity in several spe-
cies. Blood samples from guinea pig, mouse, sheep, and human
were tested. Interestingly, only red blood cells from guinea pigs
were affected by GRFT—at concentrations over 5 �g/ml (Fig. 7).
As expected, the vehicle (PBS) did not show any hemagglutination
activity on erythrocytes, and the known hemagglutinating agent
PHA demonstrated activity at concentrations of 5 �g/ml and
above for all species tested.

DISCUSSION

In this study, we demonstrated that GRFT persists in serum and
plasma of laboratory rodents at concentrations well above the
EC50 described for several known enveloped viruses after subcu-
taneous administration (10, 17, 19, 27). Although decreasing in
concentrations after final administration, functionally active con-
centrations of GRFT, as determined by gp120 binding ELISA, re-
main in circulation for many days after treatment cessation in
regimens of both single and chronic dosing. These findings sup-
port further investigations of the utility of GRFT in treatment of
both acute and chronic viral infections.

Every drug candidate must show a favorable safety profile to
advocate for its further development. Previously, we demon-
strated that GRFT was devoid of any mitogenic and cytotoxic ac-
tivity, was unable to induce cell mediators of inflammation, and
had only minimal off-target effects on human cells (14), corrob-
orating the results of other works (10, 15) and unlike other anti-
HIV lectins, including CV-N and ConA (28, 29). In the present in
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vivo studies, GRFT did not alter experimental animal behavior
and no animal died as a result of treatment. Using juvenile ani-
mals, we did notice that guinea pigs treated with GRFT gained
weight significantly more slowly than those injected with PBS.
This is not the case when adult mice are treated s.c. with GRFT
(unpublished data). Organ toxicity was also assessed both by
measuring weights and by histopathology. While liver and
spleen percentages displayed a statistically significant increase
in comparison with those of the controls, histopathological
examination of the organs from GRFT-treated animals did not
show any pathology.

When a complete blood count was performed and serum
chemistries were analyzed, we observed that most of the parame-
ters were not significantly changed as a result of GRFT treatment.
The only exception was RDW. Although significantly different
from those of the PBS controls, RDW values obtained from

GRFT-treated animals remained within the normal range de-
scribed for guinea pigs. In serum chemistries, alkaline phospha-
tase levels were significantly elevated in GRFT-treated guinea pigs.
Whether this elevation is related to the increased liver-mass-to-
body-weight ratio seen with GRFT-treated animals is yet to be
determined since the alkaline phosphatase isotype was not deter-
mined.

As a xenogeneic protein, a key concern is a possible immune
response to GRFT which could lead to anaphylaxis (30). Our data
showing treatment-associated increases in spleen- and liver-mass-
to-body-weight ratios is suggestive of a nascent immune response
to GRFT treatment. However, we were unable to detect anti-
GRFT antibodies in sera from these treated animals, probably re-
flective of the short duration of these studies. Although GRFT is a
relatively weak immunogen, we are able to raise high-titer anti-
bodies in animals immunized with GRFT in the presence of adju-
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TABLE 1 Hematological profile for guinea pigs after chronic treatment with GRFTa

Cell type Parameter Unit

Values

Day 11 Day 15

PBS (n � 3) GRFT (n � 5) PBS (n � 3) GRFT (n � 5)

Leukocyte WBC k/�l 4.92 	 2.43 2.15 	 0.23 4.35 	 1.28 2.90 	 1.36
NE k/�l 2.30 	 1.46 0.96 	 0.13 1.67 	 0.45 1.01 	 0.42
LY k/�l 2.49 	 1.11 1.14 	 0.28 2.60 	 0.89 1.82 	 0.99
MO k/�l 0.09 	 0.10 0.03 	 0.03 0.07 	 0.03 0.06 	 0.04
EO k/�l 0.03 	 0.02 0.02 	 0.01 0.02 	 0.01 0.01 	 0.02
BA k/�l 0.00 	 0.01 0.00 	 0.00 0.00 	 0.00 0.00 	 0.00

Erythrocyte RBC M/�l 4.30 	 0.06 4.12 	 0.18 4.75 	 0.21 4.37 	 0.22
Hb g/dl 12.23 	 0.64 11.64 	 0.46 13.10 	 0.46 12.22 	 0.61
HCT % 38.30 	 2.31 36.12 	 1.47 41.57 	 1.76 39.52 	 1.94
MCV fl 88.97 	 4.73 87.58 	 1.29 87.53 	 1.70 90.40 	 0.52*
MCH pg 28.43 	 1.33 28.26 	 1.52 27.63 	 0.61 27.96 	 1.04
MCHC g/dl 31.97 	 0.25 32.26 	 1.33 31.50 	 0.26 30.94 	 1.11
RDW % 13.83 	 1.43 12.92 	 0.73 14.13 	 0.29 12.66 	 0.70*

Thrombocyte PLT k/�l 595.33 	 54.31 628.60 	 44.77 677.33 	 11.93 659.00 	 34.26
MPV fl 4.40 	 1.14 3.92 	 0.23 3.57 	 0.12 3.84 	 0.24

a Data represent the mean values 	 standard deviations for white blood cells (WBC), neutrophils (NE), lymphocytes (LY), monocytes (MO), eosinophils (EO), basophils (BA), red
blood cells (RBC), hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), red cell
distribution width (RDW), platelets (PLT), and mean platelet volume (MPV). Statistical significance (P � 0.05) is indicated by asterisks (*).
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vant; these hyperimmune sera were binding but nonneutralizing
(data not shown). Immunogenicity of biologic drugs is a widely
acknowledged issue, and our data suggest that future efforts to
deimmunize GRFT by structure-guided elimination of T-cell
epitopes (31, 32) may be necessary before the product can be used
for chronic treatment of viral infection in humans. Lectins are well
known for their mitogenic and agglutinating properties (28, 29,
33–36) which prevent their use as therapeutics. We previously
addressed the mitogenicity concern by showing that GRFT lacks
T-cell mitogenic activity (14). Here, we demonstrated that GRFT
does not agglutinate red blood cells from several species, including
human, mouse, and sheep. However, we observed that guinea pig
erythrocytes were agglutinated by GRFT at high concentrations.
The cause of this discrepancy is unclear but may well be associated
with the treatment-associated increase in red blood cell width we
observed. We conclude that the preliminary toxicity profile of
GRFT is acceptable and favors its further development in antiviral
prophylaxis and therapy.

GRFT is currently under development as both a topical mi-
crobicide and a broad-spectrum antiviral. However, GRFT is
not systemically bioavailable after topical administration (our
unpublished observations), so parenteral administration is
probably necessary to achieve sufficient drug in the systemic

concentrations necessary for effective suppression of viral rep-
lication. Our data confirm that subcutaneous administration
of GRFT is a viable and efficient way to get the drug into sys-
temic circulation to allow a sustained pharmacodynamic effect
(37). Our data support the results of published studies on
GRFT prophylactic efficacy in murine models of hepatitis C
virus and Japanese encephalitis virus infection (17, 18, 21).
These studies found that GRFT effectively suppressed viral rep-
lication when administered at a 5 mg/kg dose, either subcuta-
neously or intraperitoneally. We are currently studying
whether administrations of GRFT at levels under the 10-mg/kg
dosage are sufficient to maintain drug concentrations at poten-
tially therapeutic levels. There is substantial precedent for pa-
tient self-administration of drugs via the subcutaneous route;
indeed, the peptide HIV fusion inhibitor Enfurtide (T-20) is
administered in this fashion. Our data confirm that we can
achieve HIV-1 Du156 50% serum neutralization indices in ex-
cess of 500 after 14 daily doses of GRFT at 10 mg/kg (Fig. 2),
which should be sufficient to inhibit HIV replication and per-
haps to promote viral evolution toward enhanced humoral
antibody suppression (7, 34, 37). These levels were also more
than sufficient to prevent JEV infection in a mouse infection
model and HCV infection in in a mouse-humanized liver
model (17, 20).

Under selection pressure with CBA, susceptible viruses may
evolve toward resistance through loss of key N-linked glycosyla-
tion sites (26, 38–41). Interestingly, in the case of HIV-1, CBA
resistance correlates with reduced viral fitness and enhanced sus-
ceptibility to neutralizing antisera (7, 38, 41). Consequently, it has
been suggested that CBA therapy for treatment of chronic viral
infections such as those by HIV-1 and HCV may promote viral
evolution toward resistance to the CBA concomitant with en-
hanced susceptibility to host immune control. This concept of
CBA-mediated immunotherapy holds considerable appeal as a
method to promote durable immune control and perhaps even
eradication of HIV infection (7). Given GRFT’s antiviral activity
in the mid-picomolar range, and our data here that show that the
drug accumulates to relevant therapeutic concentrations which
are tolerated with minimal toxicity, GRFT is a strong candidate for
further experimental testing of this idea first put forward by Bal-
zarini (7).
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